3 erros que você deve evitar na análise estatística do seu artigo científico

A análise estatística exerce papel fundamental na pesquisa científica. Com ela podemos sair do plano da especulação, supomos relações de causa e efeito no nosso estudo, presumimos que nossa amostra é representativa, e acreditamos que nossos resultados são significativos (expressões que sempre chamam a atenção da banca examinadora, pronta pra pegar no pulo o aluno que tenta escapar pela tangente).

O reconhecimento da importância de mensurar os resultados, juntamente com o aumento da capacidade de processamento dos softwares estatísticos, fez com que a inclusão da análise estatística em trabalhos acadêmicos se tornasse quase obrigatória.

Infelizmente, o currículo dos cursos de graduação e pós-graduação em muitos casos não acompanha essa evolução.

Assim, pós-graduandos saem com uma formação básica em estatística, sabendo alguns testes de hipótese e se apoiando somente nos resultados do p-valor, mas sem as ferramentas necessárias pra entender os resultado da análise estatística dos artigos de referência, e muito menos para realizar sua própria análise estatística.

Mas tendo consciência dessas limitações, não é hora de entrar em desespero – e nem quando não se consegue a quantidade de amostras desejada, ou os resultados não seguem o esperado, ou o p-valor não é significativo; nada disso impossibilita que você escreva um artigo de qualidade.

Basta ter cuidado e, antes mesmo de coletar o primeiro resultado, atentar para não cometer esses três erros muito comuns, que mostramos a seguir.

Erro nº 1: Não planejar a coleta de dados

Parece simples, mas muitos trabalhos tornam-se menos completos e relevantes porque não se pensou em todas as variáveis que precisava obter pra atender seus objetivos, e em que formato elas precisavam estar, pra aplicar a análise estatística que tinha em mente.

Um exemplo típico é quando o pesquisador inclui perguntas abertas no seu questionário, tendo apenas uma ideia do que vai analisar com essas informações.

Imagine um trabalho em que o pesquisador tem como objetivo secundário conhecer a renda do seu público de interesse. Ele imprime vários questionários (imagina o trabalho pra digitar tudo depois) e entrega aos indivíduos da amostra (boa sorte tentando decifrar a caligrafia de cada um) obtendo os resultados a seguir:

análise estatística

Para contornar os problemas que identificamos, precisamos ter claro em mente o que queremos de nossos dados:
1. Queremos manter a pergunta sobre a renda dos pesquisados em nossos questionários;
2. Para contornar o fato de que a informação da renda é muito pessoal, vamos pedir apenas uma estimativa da renda, e tornar a pergunta opcional; e
3. Vamos dividir a resposta da pergunta em cinco categorias, e calcular posteriormente a proporção de respostas em cada uma delas.

Desta forma, nossa pergunta do questionário, cuidadosamente planejada de acordo com a análise estatística, seria:

análise estatística

Nosso resultado será uma variável padronizada, com mais respostas completas, de fácil análise estatística e de fácil interpretação.

Erro nº 2: Não testar os pressupostos dos testes estatísticos

Apertando alguns botões no SPSS podemos realizar análises complexas e obter resultados resumidos.

Mas o software é apenas uma ferramenta, que não substitui o julgamento, conhecimento e bom senso do pesquisador. E parte desse conhecimento envolve saber quais os pré-requisitos que nossos dados devem apresentar para que nossa análise estatística tenha resultados válidos.

Para isso, é necessário adicionar mais algumas horas de estudo para entender as estatísticas calculadas, e um pouquinho da teoria que torna necessário o cumprimento desses pressupostos. Eles variam de análise para análise (um pressuposto comum é a normalidade dos resíduos) e devem ser conhecidos e verificados (Pinto e Schwaab, 2011).

Esse trabalho será compensado no momento de submissão do seu trabalho acadêmico para aprovação, em que a pesquisa com conteúdo bem embasado se destacará em relação as outras, em que os apertadores de botão colocam tabelas e mais tabelas de resultados, mas sem pensar tanto sobre seu significado.

Erro nº 3: Limitar-se ao p-valor significativo na análise estatística

Sim, o p-valor é importantíssimo. Explicando de maneira intuitiva, ele mensura a probabilidade de que nosso resultado estatístico tenha sido identificado apenas por acaso, e queremos que essa probabilidade seja pequena para mostrar a relevância das nossas conclusões (Rumsey e Franzim, 2014).

Porém, o p-valor sofre a interferência de diversos fatores, e não pode ser analisado de forma isolada.

É comum nos concentrarmos no p-valor, e esquecermos do poder do teste, que mede a capacidade de detecção de resultados do teste (Bussab e Morettin, 2013), que é um assunto para um outro texto.

Também muitas vezes temos limitações em identificar p-valor significativo por causa do tamanho de amostra, o qual por vezes não podemos aumentar por limitações financeiras na pesquisa. Obtendo ou não o p-valor significativo, limitar as conclusões de sua pesquisa a um único resultado é deixar de explorar o que os dados tem a oferecer (Moore e Fligner, 2014).

Gostando ou não da análise estatística, ela estará cada vez mais presente na vida do pós-graduando. Para passar por essa etapa do trabalho sem (muito) sofrimento, é preciso se dedicar e, se necessário, buscar a ajuda de um profissional capacitado.

“Alguns usam a estatística como os bêbados usam postes: mais para apoio do que para iluminação”.
Andrew Lang

By |2018-12-06T01:56:15+00:0027-10-2015|guia|13 Comments
Visa atender acadêmicos e empresas em atividades que podem se beneficiar do uso de técnicas estatísticas, oferecendo atendimento à distância. Visite o site e a página no Facebook.

13 Comments

  1. Marcella Bernardo 27.10.15 at 08:18 - Reply

    E pode evitar a análise estatística?! rs

  2. Henrique Nunes 27.10.15 at 09:06 - Reply

    Estatística é foda! Aprendi pouco de t-student, anova e tukey ??

  3. Ludmila Alves 27.10.15 at 09:11 - Reply

    interessante. Mas em relação ao erro1, discordo do exemplo.pq naquela forma, de resp, dado pode(+)

  4. Renan Birck Pinheiro 27.10.15 at 10:26 - Reply

    Estatística é uma matéria que infelizmente é mal ensinada na graduação… 🙁

    • Antonio Lopes 13.09.18 at 16:00 - Reply

      Renam ´sou formado em Estatística pela UFC fui aprender quando comecei a dar curso e fazer curso….peguei professores péssimos sem didática e além do mais sem interesse de ensinar, só queriam receber no final do mês o vil metal….(rss)….você tem toda razão…..qualquer coisa que eu possa ajudar meu email é:
      [email protected].

  5. Frederico Monfardini 27.10.15 at 17:51 - Reply

    Eu, como estatístico, diria que esses são os três erros mais comuns, pois existem muitos outros. E o que me deixa triste, são alguns “erros” de má fé, em que se usa das estatísticas (leia aqui manipulação de dados) para publicação de artigos.

  6. Heitor 06.09.16 at 16:58 - Reply

    Para que não haja erros em sua análise estatística, contrate um Estatístico. Simples assim.

Leave A Comment